Abstract

Vincristine induced peripheral neuropathy (VIPN) is a serious untoward side effect suffered by cancer patients, which still lacks an adequate therapeutic approach. This study examined the alleviating potential of novel methanimine derivatives i.e. (E)-N-(4-nitrobenzylidene)-4-chloro-2-iodobenzamine (KB 9) and (E)-N-(2-methylbenzylidene)-4-chloro-2-iodobenzamine (KB 10) in VIPN. Vincristine was injected in BALB/c mice for 10 days to instigate nociceptive neuropathy. Dynamic and static allodynia, thermal (hot and cold) hyperalgesia were evaluated at 0, 5, 10 and 14 days using cotton brush, Von Frey filament application, hot plate test, acetone drop and cold water respectively. Tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), lipid peroxide (LPO), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and reactive oxygen species (ROS) assays were performed to assess the efficacy of KB9 and KB10 against neuroinflammation and oxidative stress utilizing ELISA, immunohistochemistry and western blot analysis in brain and sciatic nerve tissues. Computational studies were executed to determine the stable binding conformation of both compounds with respect to COX-2 and NF-κB. Interestingly, both compounds substantially reduced protein expression related to neuroinflammation, oxidative stress (LPO, GST, SOD, CAT) and pain (NF-κB, COX-2, IL-1β and TNF-α). This molecular analysis suggested that the neuroprotective effect of KB9 and KB10 was mediated via regulation of inflammatory signaling pathways. Overall, this study demonstrated that KB9 and KB10 ameliorated vincristine induced neuropathy, through anti-inflammatory, anti-nociceptive and antioxidant mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call