Abstract
Infrastructure materials, such as rocks and concrete, exhibit an array of intricate and interrelated dynamic mechanical behaviors that act across a broad range of size scales. Modeling these dynamic behaviors is important for understanding safe design, application, and maintenance practices. One particular and fascinating nonlinear dynamic mechanic response - slow dynamics - is characterized by a self-recovering hysteretic stress-strain relationship. Here we formulate a mechanistic model for slow dynamics, which we call a mechanistic diffusion model (MDM), based on coupled mechanical and diffusional processes. Diffusion-driven moisture migration nearby the minuscule regions surrounding granular contact points within a cracked solid serves as the physical foundation of the model. Diffusion physics explains fast conditioning rates, as moisture is vaporized, and relatively slow recovery process rates, as the moisture condenses back to equilibrium conditions. The MDM provides physically-based justification for environment and strain activated observations noted in previous slow dynamic experiments. The MDM is verified against new experimental data of internal humidity and mechanical softening observed in a porous solid during dynamic excitation. The MDM model predicts, and the accompanying experiment successfully exhibits, internal humidity changes with slow dynamic nonlinearity of the test material. The MDM model identifies a physical mechanism of transient nonlinearity and provides a framework to interpret the significance of observed slow dynamic nonlinear behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.