Abstract
ObjectiveWe aim to quantitatively characterize the crosstalk between VEGF‐ and FGF‐mediated angiogenic signaling and endothelial sprouting, to gain mechanistic insights and identify novel therapeutic strategies.MethodsWe constructed an experimentally validated hybrid agent‐based mathematical model that characterizes endothelial sprouting driven by FGF‐ and VEGF‐mediated signaling. We predicted the total sprout length, number of sprouts, and average length by the mono‐ and co‐stimulation of FGF and VEGF.ResultsThe experimentally fitted and validated model predicts that FGF induces stronger angiogenic responses in the long‐term compared with VEGF stimulation. Also, FGF plays a dominant role in the combination effects in endothelial sprouting. Moreover, the model suggests that ERK and Akt pathways and cellular responses contribute differently to the sprouting process. Last, the model predicts that the strategies to modulate endothelial sprouting are context‐dependent, and our model can identify potential effective pro‐ and anti‐angiogenic targets under different conditions and study their efficacy.ConclusionsThe model provides detailed mechanistic insight into VEGF and FGF interactions in sprouting angiogenesis. More broadly, this model can be utilized to identify targets that influence angiogenic signaling leading to endothelial sprouting and to study the effects of pro‐ and anti‐angiogenic therapies.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.