Abstract

The TetR aptamer induces TetR controlled gene expression, and represents an interesting tool for application in synthetic biology. We have analysed the mechanistic basis for RNA aptamer-based induction of TetR. The aptamer binds TetR with a high affinity in the order of 10(7) M(-1), which is similar to operator DNA binding under the used ionic conditions. We identified the binding epitope of the aptamer on TetR, which consists of amino acids T27, N47 and K48 of both monomers, using loss-of-function analysis and electrophoretic mobility shift assays. Tetracycline-induced conformational changes of TetR led to reorientation of the DNA reading head. This movement destroys the composite binding epitope for the aptamer and leads to reduced RNA binding by one order of magnitude. The aptamer can actively displace TetR from the operator DNA; this could be the key factor for its activity in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.