Abstract

The mechanism of the cycloaddition of CO2 with propylene oxide to afford propylene carbonate catalyzed by a highly active trans-dichlorotetrapyridineruthenium [trans-Ru(py)4Cl2] complex and tetrabutylammonium chloride (TBAC) has been studied by means of electrospray ionization mass spectrometry (ESI–MS), structural characterization of trans-Ru(py)4Cl2, catalyst activity tests and so on. Further experiments demonstrated that the tributylamine formed in situ was involved in the catalysis and that addition of butyl chloride to re-convert the tributylamine into TBAC resulted in the inhibition of the reaction. The mechanistic study explains the reported early experimental observations well and provides a clear profile for the cycloaddition of carbon dioxide with propylene oxide using trans-Ru(py)4Cl2 as catalyst. The mechanism also fully explains the role of the TBAC by providing a role for the in situ generated tributylamine in activating the carbon dioxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.