Abstract

Secondary active transporters are of paramount biological impact in all living cells, facilitating the movement of many different substrates across the membrane against a concentration gradient. The uphill transport of one substrate is coupled to the downhill transport of another and driven by the electrochemical gradient. In the last decade, an increasing number of atomic structures of secondary transporters have been reported, confirming a very fundamental mechanistic concept known as the alternating-access cycle. The wealth of structures of transporters sharing the so-called LeuT-like fold that is characterized by two five-transmembrane-helix repeats sharing a 2-fold inverted pseudo symmetry has raised big hopes to finally describe alternating access on a molecular level. Although comparing the individual transporter states of different LeuT-like fold transporters revealed striking similarities, the coupling process, which represents the heart of secondary transport, is far from being understood. Here, we review the structural, functional, and biophysical validation of sodium-binding sites in four different LeuT-like fold transporters. The conservation of sodium sites is discussed in light of their role as key elements connecting symmetry-related structural domains, which are involved in substrate translocation. Moreover, we highlight their crucial roles in conformational changes of LeuT-like fold transporters and their implication on a unifying mechanism in secondary transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.