Abstract

Zinc oxide nanostructures are known to exist in a great variety of morphologies. However, the underlying mechanisms leading to these architectures are far from being fully understood. Here, we present a time dependent study of the generation of zinc oxide nanorods, which arrange into bundles with a fan- or bouquet-like structure, using the benzyl alcohol route. The structural evolution of the nanoparticles was monitored by electron microscopy techniques, whereas the progress of the chemical reaction was followed by quantification of the organic by-products using gas chromatography. With this study we give a detailed insight into the formation of the zinc oxide structures, which involves a complex pathway based on many in parallel occurring processes such as crystallization of primary particles, their oriented attachment and surface reconstruction inside the nanoparticulate agglomerates. However, in spite of such an intricate growth behavior, the ZnO nanostructures are surprisingly uniform in size and shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.