Abstract

The mechanistic aspects of hydration of guanine radical cations, G•+ in double- and single-stranded oligonucleotides were investigated by direct time-resolved spectroscopic monitoring methods. The G•+ radical one-electron oxidation products were generated by SO4•– radical anions derived from the photolysis of S2O82– anions by 308 nm laser pulses. In neutral aqueous solutions (pH 7.0), after the complete decay of SO4•– radicals (∼5 μs after the actinic laser flash) the transient absorbance of neutral guanine radicals, G(-H)• with maximum at 312 nm, is dominant. The kinetics of decay of G(-H)• radicals depend strongly on the DNA secondary structure. In double-stranded DNA, the G(-H)• decay is biphasic with one component decaying with a lifetime of ∼2.2 ms and the other with a lifetime of ∼0.18 s. By contrast, in single-stranded DNA the G(-H)• radicals decay monophasically with a ∼ 0.28 s lifetime. The ms decay component in double-stranded DNA is correlated with the enhancement of 8-oxo-7,8-dihydroguanine (8-oxoG) yields which are ∼7 greater than in single-stranded DNA. In double-stranded DNA, it is proposed that the G(-H)• radicals retain radical cation character by sharing the N1-proton with the N3-site of C in the [G•+:C] base pair. This [G(-H)•:H+C ⇆ G•+:C] equilibrium allows for the hydration of G•+ followed by formation of 8-oxoG. By contrast, in single-stranded DNA, deprotonation of G•+ and the irreversible escape of the proton into the aqueous phase competes more effectively with the hydration mechanism, thus diminishing the yield of 8-oxoG, as observed experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call