Abstract
Abstract Interactions between plants and soil microbes can influence plant population dynamics and diversity in plant communities. Traditional theoretical paradigms view the microbial community as a black box with net effects described by phenomenological models. This approach struggles to quantify the importance of plant–microbe interactions relative to other competition and coexistence mechanisms and to explain context dependence in microbe effects. We argue that a mechanistic framework focused on microbial functional groups will lead to conceptual and empirical advances, as demonstrated by extending resource ratio theory to plant–microbe interactions. We review the diverse pathways by which different microbial functional groups can influence plant resource competition. Finally, we suggest approaches to link theory with observations to measure the key parameters of our framework. Synthesis: Our review highlights recent experimental advancements for uncovering microbial mechanisms that alter plant host resource competition and coexistence. We synthesize these mechanisms into a conceptual model that provides a framework for future experiments to investigate the importance of plant–microbe interactions in structuring plant populations and communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.