Abstract

With the increasing demand for artificially intelligent hardware systems for brain-inspired in-memory and neuromorphic computing, understanding the underlying mechanisms in the resistive switching of memristor devices is of paramount importance. Here, we demonstrate a two-step resistive switching set process involving a complex interplay among mobile halide ions/vacancies (I-/VI+) and silver ions (Ag+) in perovskite-based memristors with thin undoped buffer layers. The resistive switching involves an initial gradual increase in current associated with a drift-related halide migration within the perovskite bulk layer followed by an abrupt resistive switching associated with diffusion of mobile Ag+ conductive filamentary formation. Furthermore, we develop a dynamical model that explains the characteristic I-V curve that helps to untangle and quantify the switching regimes consistent with the experimental memristive response. This further insight into the two-step set process provides another degree of freedom in device design for versatile applications with varying levels of complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.