Abstract
In this research, a three-dimensional coupled wave-circulation model, including meteorological forcing, freshwater inflow and time varying open boundary conditions, for New River Inlet is validated. A mechanistic approach is taken to investigate how various wave-current interaction mechanisms affect the nearshore circulation, plume expansion and surface wave field in the plume region of a relatively small partially mixed tidal estuarine system. More specifically, focus is comparing four different modeling cases including: (1) a three-dimensional ocean circulation model (no wave effects), (2) a coupled wave-circulation model, (3) a coupled wave and circulation model including vertical mixing enhancement due to wave breaking, and (4) a wave model without surface current effects. Findings reveal forces are applied by incoming waves due to various wave-current interaction mechanisms. Wave momentum released by incoming waves pushes the outgoing freshwater ebb plume back to the shoreline and prevents the plume from expanding freely towards the open ocean. Findings also reveals that releasing wave-dissipated energy in the expanding plume region enhances vertical mixing, mixes down freshwater, and therefore thickens the plume. These results are congruent with observations at the mouth of the Columbia River.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.