Abstract

Detailed mechanistic studies on the palladium-catalyzed direct arylation of pyridine N-oxides are presented. The order of each reaction component is determined to provide a general mechanistic picture. The C-H bond cleaving step is examined in further detail through computational studies, and the calculated results are in support of an inner-sphere concerted metalation-deprotonation (CMD) pathway. Competition experiments were conducted with N-oxides of varying electronic characters, and results revealed an enhancement of rate when using a more electron-deficient species, which is in support of a CMD transition state. The effect of base on reaction rate was also examined and it was found that a carboxylate base was required for the reaction to proceed. This led to the conclusion that Pd(OAc)(2) plays a pivotal role in the reaction mechanism as more than merely a precatalyst, but also as a source of acetate base required for the C-H bond cleavage step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.