Abstract

Our objective was to describe the process of alkali disposal in rats. Balance studies were performed while incremental loads of alkali were given to rats fed a low-alkali diet or their usual alkaline ash diet. Control groups received equimolar NaCl or KCl. Virtually all of the alkali was eliminated within 24 h when the dose exceeded 750 micromol. The most sensitive response to alkali input was a decline in the excretion of NH(4)(+). The next level of response was to increase the excretion of unmeasured anions; this rise was quantitatively the most important process in eliminating alkali. The maximum excretion of citrate was approximately 70% of its filtered load. An even higher alkali load augmented the excretion of 2-oxoglutarate to >400% of its filtered load. Only with the largest alkali load did bicarbonaturia become quantitatively important. We conclude that renal mechanisms eliminate alkali while minimizing bicarbonaturia. This provides a way of limiting changes in urine pH without sacrificing acid-base balance, a process that might lessen the risk of kidney stone formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call