Abstract

ObjectiveTo evaluate vasorelaxant and vasoconstriction effects of Zingiber officinale var. rubrum (ZOVR) on live rats and isolated aortic rings of spontaneously hypertensive rats (SHRs). MethodsExtracts of ZOVR were subjected to in-vivo antihypertensive screening using noninvasive blood pressures in SHRs. The most potent extract, ZOVR petroleum ether extract (ZOP) was then fractionated using n-hexane, chloroform and water. Isolated thoracic aortic rings were harvested and subjected to vascular relaxation studies of n-hexane fraction of ZOP (HFZOP) with incubation of different antagonists such as Nω-nitro-l-arginine methyl ester (L-NAME, 10 µmol/L), indomethacin (10 µmol/L), methylene blue (10 µmol/L), atropine (1 µmol/L), glibenclamide (10 µmol/L), prazosin (0.01 µmol/L), and propranolol (1 µmol/L). ResultsDuring the screening of various ZOVR extracts, ZOP produced the most reduction in blood pressures of SHRs and so did HFZOP. HFZOP significantly decreased phenylephrine-induced contraction and enhanced acetylcholine-induced relaxation. L-NAME, indomethacin, methylene blue, atropine, and glibenclamide significantly potentiated the vasorelaxant effects of HFZOP. Propranolol and prazosin did not alter the vasorelaxant effects of HFZOP. HFZOP significantly suppressed the Ca2+-dependent contraction and influenced the ratio of the responses to phenylephrine in Ca2+-free medium. ConclusionThis study demonstrates that ZOP may exert an antihypertensive effect in the SHR model. Its possible vascular relaxation mechanisms involve nitric oxide and prostacyclin release, activation of cGMP-KATP channels, stimulation of muscarinic receptors, and transmembrane calcium channel or Ca2+ release from intracellular stores. Possible active compounds that contribute to the vasorelaxant effects are 6-gingerol, 8-gingerol and 6-shogaol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call