Abstract

To study the fundamental mechanisms of toxicity of the fruity aroma compound gamma-decalactone, that lead to alterations in cell viability during its biotechnological production by yeast cells; Yarrowia lipolytica that is able to produce high amounts of this metabolite was used here as a model. Lactone concentrations above 150 mg l-1 inhibited cell growth, depolarized the living cells and increased membrane fluidity. Infrared spectroscopic measurements revealed that the introduction of the lactone into model phospholipid bilayers, decreased the phase transition temperature. Moreover, the H+-ATPase activity in membrane preparations was strongly affected by the presence of the lactone. On the other hand, only a slight decrease in the intracellular pH occurred. We propose that the toxic effects of gamma-decalactone on yeast may be initially linked to a strong interaction of the compound with cell membrane lipids and components. These findings may enable the elaboration of strategies to improve yeast cell viability during the process of lactones bioproduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.