Abstract

The initial processing of interaural intensity differences (IIDs), the major cue to the azimuthal location of high-frequency sounds in mammals, is carried out by neurons in the lateral superior olivary nucleus (LSO) that receive excitatory input from the ipsilateral ear and inhibitory input from the contralateral ear (IE neurons). The "latency" hypothesis asserts that it is the effects of intensity differences on the latency, and hence the relative timing, of the synaptic inputs to these neurons that is the basis of their sensitivity to IIDs, while other models assign the major role to changes in the relative amplitude of the inputs. To test the latency hypothesis and to determine the contributions of changes in the relative timing and amplitude of synaptic inputs to the IID sensitivity of LSO neurons, a method was developed of generating sets of stimuli that produced either the same changes in the relative timing of inputs without any change in their amplitude (equivalent interaural time difference stimuli) or the same differences in amplitude without any difference in timing (delay-cancelled IID stimuli) as a given range of IIDs. Data were obtained from a sample of IE neurons in the LSO of anesthetized rats using these stimulus paradigms and click and tone-burst stimuli. For click stimuli, the IID sensitivity of a small proportion of neurons was explained entirely by sensitivity to differences in input timing, but the sensitivity of most neurons reflected either sensitivity to the relative amplitude of inputs or to the joint operation of both factors. In neurons whose sensitivity was tested at a number of different absolute sound pressure levels (SPLs), the relative contributions of the two factors tended to differ at different SPLs. The IID sensitivity of onset responses to tone stimuli could be classified into the same three categories but was explained for a larger proportion of neurons by sensitivity to differences in input timing. The IID sensitivity of the late response component of neurons with sustained responses to tones in all cases reflected sensitivity to the relative amplitude of the inputs. The results confirm the contribution of changes in latency produced by intensity changes to the IID sensitivity of the onset responses of many IE neurons in LSO but require rejection of the strong form of the latency hypothesis, which asserts that this factor alone accounts for such sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.