Abstract

Early repolarization pattern in the ECG has been associated with increased risk for ventricular tachycardia/fibrillation (VT/VF), particularly when manifest in inferior leads. This study examines the mechanisms underlying VT/VF in early repolarization syndrome (ERS). Transmembrane action potentials (APs) were simultaneously recorded from 2 epicardial sites and 1 endocardial site of coronary-perfused canine left-ventricular (LV) wedge preparations, together with a pseudo-ECG. Transient outward current (Ito) was recorded from epicardial myocytes isolated from the inferior and lateral LV of the same heart. J wave area (pseudo-ECG), epicardial AP notch magnitude and index were larger in inferior vs. lateral wall preparations at baseline and after exposure to provocative agents (NS5806+verapamil+acetylcholine (ACh)). Ito density was greater in myocytes from inferior vs. lateral wall (18.4±2.3pA/pF vs. 11.6±2.0pA/pF; p<0.05). A combination of NS5806 (7μM) and verapamil (3μM) or pinacidil (4μM), used to pharmacologically model the genetic defects responsible for ERS, resulted in prominent J-point and ST-segment elevation. ACh (3μM), simulating increased vagal tone, precipitated phase-2-reentry-induced polymorphic VT/VF. Using identical protocols, inducibility of arrhythmias was 3-fold higher in inferior vs. lateral wedges. Quinidine (10μM) or isoproterenol (1μM) restored homogeneity and suppressed VT/VF. Our data support the hypothesis that 1) ERS is caused by a preferential accentuation of the AP notch in the LV epicardium; 2) this repolarization defect is accentuated by elevated vagal tone; 3) higher intrinsic levels of Ito account for the greater sensitivity of the inferior LV wall to development of VT/VF; and 4) quinidine and isoproterenol exert ameliorative effects by reversing the repolarization abnormality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.