Abstract

Photosynthesis acclimation to high temperature differs among and within species. Grapevine intra-specific variation in photosynthetic acclimation to elevated temperature has been scarcely assessed. Our objectives were to (i) evaluate the mechanisms underlying long-term acclimation of photosynthesis to elevated temperature in grapevine, and (ii) determine whether these responses are similar among two varieties. A warming experiment with well irrigated Grenache and Syrah field-grown plants was performed during two growing seasons comparing plants exposed at ambient temperature (control) with plants in open-top chambers (heating) that increased mean air temperature between 1.5 and 3.6°C. Photosynthetic acclimation was assessed through the response of net assimilation (An), Rubisco carboxylation rate (Vcmax) and electron transport rate (Jmax), at leaf temperatures from 20 to 40°C. Our results evidenced different mechanisms for photosynthetic acclimation to elevated temperature. Compared with control, Grenache heated increased An, maintaining higher Vcmax and Jmax at temperatures above 35°C. By contrast, Syrah heated and control presented similar values of An, Vcmax and Jmax, evidencing an adjustment of photosynthesis without increasing C assimilation. Both varieties increased the optimum temperature for An, but to a lesser extent when growth temperature was higher. Our study provides evidence that grapevine varieties present different acclimation mechanisms to expected warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.