Abstract
Legumes, unlike most land plants, can form symbiotic root nodules with nitrogen-fixing bacteria to secure nitrogen for growth. The formation of nitrogen-fixing nodules on legume roots requires the coordination of rhizobial infection at the root epidermis with cell division in the cortex. The nodules house the nitrogen-fixing rhizobia in organelle-like structures known as symbiosomes, which enable nitrogen fixation and facilitate the exchange of metabolites between the host and symbionts. In addition to this beneficial interaction, legumes are continuously exposed to would-be pathogenic microbes; therefore the ability to discriminate pathogens from symbionts is a major determinant of plant survival under natural conditions. Here, we summarize recent advances in the understanding of root nodule symbiosis signaling, transcriptional regulation, and regulation of plant immunity during legume-rhizobium symbiosis. In addition, we propose several important questions to be addressed and provide insights into the potential for engineering the capacity to fix nitrogen in legume and non-legume plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.