Abstract

Recent clinical data support the utility/superiority of a new AKI biomarker ("NephroCheck"), the arithmetic product of urinary TIMP × IGFBP7 concentrations. However, the pathophysiologic basis for its utility remains ill defined. To clarify this issue, CD-1 mice were subjected to either nephrotoxic (glycerol, maleate) or ischemic AKI. Urinary TIMP2/IGFBP7 concentrations were determined at 4 and 18 hours postinjury and compared with urinary albumin levels. Gene transcription was assessed by measuring renal cortical and/or medullary TIMP2/IGFBP7 mRNAs (4 and 18 hours after AKI induction). For comparison, the mRNAs of three renal "stress" biomarkers (NGAL, heme oxygenase 1, and p21) were assessed. Renal cortical TIMP2/IGFBP7 protein was gauged by ELISA. Proximal tubule-specific TIMP2/IGFBP7 was assessed by immunohistochemistry. Each AKI model induced prompt (4 hours) and marked urinary TIMP2/IGFBP7 increases without an increase in renal cortical concentrations. Furthermore, TIMP2/IGFBP7 mRNAs remained at normal levels. Endotoxemia also failed to increase TIMP2/IGFBP7 mRNAs. In contrast, each AKI model provoked massive NGAL, HO-1, and p21 mRNA increases, confirming that a renal "stress response" had occurred. Urinary albumin rose up to 100-fold and strongly correlated (r=0.87-0.91) with urinary TIMP2/IGFBP7 concentrations. Immunohistochemistry showed progressive TIMP2/IGFBP7 losses from injured proximal tubule cells. Competitive inhibition of endocytic protein reabsorption in normal mice tripled urinary TIMP2/IGFBP7 levels, confirming this pathway's role in determining urinary excretion. AKI-induced urinary TIMP2/IGFBP7 elevations are not due to stress-induced gene transcription. Rather, increased filtration, decreased tubule reabsorption, and proximal tubule cell TIMP2/IGFBP7 urinary leakage seem to be the most likely mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call