Abstract

Extraordinary transmission in subwavelength hole arrays has been interpreted by surface-plasmon models and diffraction-based models. To understand controversial mechanisms of transmission enhancement, we simulate hole arrays, using a rigorous Fourier-space scattering matrix simulation. At the enhanced transmission maximum there are large evanescent diffracted fields above the metal surface. These evanescent fields are decomposed into longitudinal and transverse components. Both components are comparable in magnitude. The longitudinal field is 15%-20% larger in the square lattice. Transverse fields are slightly larger in the triangular lattice. The longitudinal and transverse evanescent surface fields are related to bound surface modes of the hole array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.