Abstract

Most land plants engage in mutually beneficial interactions with arbuscular mycorrhizal (AM) fungi, the fungus providing phosphate and nitrogen in exchange for fixed carbon. During presymbiosis, both organisms communicate via oligosaccharides and butenolides. The requirement for a rice chitin receptor in symbiosis-induced lateral root development suggests that cell division programs operate in inner root tissues during both AM and nodule symbioses. Furthermore, the identification of transcription factors underpinning arbuscule development and degeneration reemphasized the plant's regulatory dominance in AM symbiosis. Finally, the finding that AM fungi, as lipid auxotrophs, depend on plant fatty acids (FAs) to complete their asexual life cycle revealed the basis for fungal biotrophy. Intriguingly, lipid metabolism is also central for asexual reproduction and interaction of the fungal sister clade, the Mucoromycotina, with endobacteria, indicative of an evolutionarily ancient role for lipids in fungal mutualism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.