Abstract
Cells recognize and respond to their extracellular environment through transmembrane receptors such as integrins, which physically connect the extracellular matrix to the cytoskeleton. Integrins provide the basis for the assembly of intracellular signaling platforms that link to the cytoskeleton and influence nearly every aspect of cell physiology; however, integrins possess no enzymatic or actin-binding activity of their own and thus rely on adaptor molecules, which bind to the short cytoplasmic tails of integrins, to mediate and regulate these functions. Many adaptors compete for relatively few binding sites on integrin tails, so regulatory mechanisms have evolved to reversibly control the spatial and temporal binding of specific adaptors. This Commentary discusses the adaptor proteins that bind directly to the tails of beta integrins and, using talin, tensin, filamin, 14-3-3 and integrin-linked kinase (ILK) as examples, describes the ways in which their binding is regulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.