Abstract

Correlations between neuronal spike trains affect network dynamics and population coding. Overlapping afferent populations and correlations between presynaptic spike trains introduce correlations between the inputs to downstream cells. To understand network activity and population coding, it is therefore important to understand how these input correlations are transferred to output correlations.Recent studies have addressed this question in the limit of many inputs with infinitesimal postsynaptic response amplitudes, where the total input can be approximated by gaussian noise. In contrast, we address the problem of correlation transfer by representing input spike trains as point processes, with each input spike eliciting a finite postsynaptic response. This approach allows us to naturally model synaptic noise and recurrent coupling and to treat excitatory and inhibitory inputs separately.We derive several new results that provide intuitive insights into the fundamental mechanisms that modulate the transfer of spiking correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.