Abstract
This study was designed to investigate whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a superoxide-producing enzyme, could be involved in phenylketonuria (PKU)-associated oxidative stress. A Pahenu2-BTBR PKU mouse model, and an in vitro cell culture model of PKU mimicking high phenylalanine insults in PKU, were employed for this study. The concentration of phenylalanine in mouse cerebral cortex was determined by liquid chromatography-tandem mass spectrometry. Superoxide production was displayed with dihydroethidium staining. NADPH oxidase expression level was measured by real-time RT-PCR, Western blotting and immunofluorescence. NADPH oxidase activity was measured by the colorimetric method. The phenylalanine concentrations in cerebral cortices of PKU mice were significantly higher than those in wild-type control mice. Similar results concerning superoxide production and NADPH oxidase protein expression and activity, were also found in this brain region. In addition, it was found that cerebral cortical neurons subjected to an in vitro high phenylalanine insult, displayed increased superoxide production accompanied by increases of NADPH oxidase protein expression and activity. Pretreatment with the inhibitor of this oxidase (diphenylene iodonium or apocynin) prevented this superoxide-increasing effect. Collectively, these findings provide evidence that NADPH oxidase might be a key enzyme involved in enhanced superoxide production in PKU and suggest that it may be a potential therapeutic target in neuroprotective strategies against phenylalanine-evoked oxidative brain injury in PKU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.