Abstract

Plant biomass is the most fundamental component of ecosystems. The spatial stability of plant biomass is important, and the mechanisms regulating plant biomass spatial variability in variable environments are a central focus of ecology. However, they have rarely been explored. We conducted an experiment to test how diversity and functional traits affected variation in biomass and community response to nutrient availability in three plant communities: natural; forb, legume, and bunchgrass; and rhizomatous grass. We found that biomass stability rarely changed with increasing taxonomic species richness and functional group richness but declined with increasing Shannon–Weiner indices (the combination of richness and evenness) and functional trait diversity. However, differences in plant species composition generated different responses in both the amount and spatial variation of biomass following nutrient addition. Because rhizomatous grasses are weakly competitive in nutrient-poor conditions, interaction between resource-acquisitive (grass) and stress-tolerant (forb) species in the natural community conferred the greatest overall stability. The rapid nutrient acquisition ability of the rhizomatous grass Leymus chinensis was stimulated in nutrient-abundant conditions. The functional traits of this dominant species overrode the diversity interaction effects of the natural and forb, legume, and bunchgrass communities. This ultimately resulted in the rhizomatous grass community being the most stable. Community stability was strongly determined by a few key species, particularly rhizomatous grasses, rather than by the average response of all species, thereby supporting the mass ratio hypothesis. Our results indicated that rhizomatous grasses could provide vegetative productivity to reduce soil loss and prevent degradation of L. chinensis-dominant grassland. Thus, protecting specific species is critical for maintaining rangeland ecosystem functions. Moreover, the conservation importance of grasses, non-leguminous forbs, legumes, or even rare species could not be ignored. Maintaining stability mechanisms in natural grasslands is complex, and therefore, further studies need to focus on finding a unified mechanism that can regulate appreciable biomass variation under shifting environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.