Abstract

In many species, endometrial gland adenogenesis occurs neonatally in an ovary- and steroid-independent manner. Chronic exposure of the developing neonatal ovine uterus to norgestomet (NOR) from birth permanently ablates endometrial gland morphogenesis or adenogenesis, creating an adult ovine uterine gland knockout (UGKO) phenotype. This study was conducted to determine the mechanism(s) whereby NOR inhibits adenogenesis in the neonatal ewe. Ewe lambs received no implant or a NOR implant at birth and on postnatal day (PND) 14, and they were necropsied on PND28. Histological analyses of the tracts indicated NOR exposure specifically inhibited endometrial adenogenesis, but no histoarchitectural differences were observed in the oviduct, cervix, or vagina. No effect of NOR treatment was detected on proliferating cell nuclear antigen (PCNA) expression in the endometrial luminal epithelium (LE), stroma, or myometrium. In control (CX) ewes, estrogen receptor α (ER-α) and progesterone receptor (PR) mRNA and protein were expressed strongly in nascent and proliferating glandular epithelium (GE) but were undetected in epithelium of NOR uteri. Expression of c-met and fibroblast growth factor receptor 2IIIb (FGFR2IIIb) mRNA was detected in the LE and GE of CX uteri. In NOR uteri, c-met was expressed in the LE similar to CX uteri, but FGFR2IIIb mRNA levels were lower than in the LE of CX uteri. Uterine hepatocyte growth factor (HGF), the ligand for c-met, and FGFR2IIIb mRNA expression was substantially lower in NOR ewes, but expression of FGF-7 and FGF-10 mRNAs, ligands for FGFR2IIIb, was unaffected. These results indicate that NOR disrupts endometrial adenogenesis by ablating epithelial ER-α expression and altering expression of paracrine growth factors and/or receptors involved in epitheliomesenchymal interactions. Likewise, these mechanisms are proposed to be important regulators of normal uterine gland morphogenesis in the neonate. Mol. Reprod. Dev. 57:67–78, 2000. © 2000 Wiley-Liss, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call