Abstract
Adrenomedullin (AM) may function as an autocrine and/or paracrine factor in the heart, but the exact mechanisms regulating cardiac AM gene expression are unknown. The aim of the present study was to characterize the role of mechanical load in regulating gene expression of AM by using two hypertensive rat strains as experimental models. Acute pressure overload was produced by arginine 8-vasopressin (AVP, 0.05 μg/kg/min, i.v.) infusion in conscious spontaneously hypertensive rats (SHR) and double transgenic rats (dTGR) harboring both the human renin and angiotensinogen genes and in their respective normotensive strains. A significant increase in left ventricular AM mRNA levels was seen in the left ventricles of all rat strains, the increase being augmented in hypertensive strains. Direct left ventricular wall stretch in isolated, perfused rat heart preparation also activated AM gene expression. However, stretching of cultured neonatal ventricular myocytes resulted in inhibition of AM gene expression, and stretch also blocked hypoxia-induced increase in AM gene expression. The present study shows that cardiac AM gene expression is upregulated in response to pressure overload and that this upregulation may be mediated via cell types other than cardiac myocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.