Abstract

Although triclosan (TCS) is ubiquitously detected in environmental media and organisms, little information is available on its cardiotoxicity and underlying mechanisms. Herein, acute TCS exposure (0.69-1.73μM) to zebrafish from embryos (6 hpf) to larvae (72 hpf) resulted in cardiac development defects, including increased angle between atrium and ventricle, prolonged SV-BA distance, linearized heart and pericardial cyst in 72-hpf larvae. These malformations resulted from interfered oxidative-stress pathways, reflecting in accumulated ROS and MDA and inhibited SOD and CAT activities. By RT-qPCR, the transcription levels of four cardiac development-related marker genes were significantly up-regulated except for gata4. Besides, miR-144 was identified as a regulatory molecule of TCS-induced cardiac defects by integrating analyses of artificial intervene expression and RNA-Seq data. Interestingly, the target genes of miR-144 were found and interacted with the above marker genes through constructing protein-protein interaction networks. After intervening the expression of miR-144 by microinjecting and activating Wnt pathway by an agonist BML-284, we confirmed that up-regulated miR-144 suppressed the expression of angiogenesis-related genes and negatively regulated Wnt pathway, further triggering angiogenesis disorders and cardiac phenotypic malformation. These findings unravel the underlying molecular mechanisms regarding TCS-induced cardiac development toxicity, and contribute to early warning and risk management of TCS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call