Abstract

Mangroves that grow at the latitudinal extremes of their distribution are susceptible to extreme cold events. Successive enhancement of low temperature stress (seLTS) is a typical characteristic of extreme cold events. Low temperature stress can inhibit mangrove photosynthesis, which often inhibits the growth and development of mangroves. However, the possible reasons for impairment to photosynthesis of mangroves due to extreme cold events remain unclear. Kandelia obovata seedlings in a growth chamber were exposed to 5°C/−2°C (day/night) for 36 h (−2°C for 16 h) with 12 h light per day at 600 μmol m−2 s−1 photosynthetic photon flux density (PPFD) (a low temperature stress, aLTS), then the plants were transferred to the control condition (15°C/10°C (day/night) and allowed to recover for 5 days (R1). The other seedlings were subjected to low temperature treatment with a day/night temperature of 5°C/−1°C in a growth chamber for 24 h. Then these plants were transferred to 5°C/−2°C (day/night) under the same light and climate conditions for 36 h (two low temperature stresses, tLTS). Following the successive enhancement of low temperature treatment, these plants were returned to 15°C/10°C (day/night) for another 5-day recovery period (R2). Results showed that aLTS treatment significantly reduced leaf net photosynthetic rate (P n) and stomatal conductance (G s), while increased intercellular CO2 concentration (C i). Photosynthetic activity of leaves quickly recovered after the plants were returned to control temperature for 5 days (R1). However, decreases in leaf P n were more obvious under tLTS treatment than those under aLTS treatment. This reduced P n might be attributed to stomatal and non-stomatal limitations. Moreover, non-stomatal limitation played a major role in reducing P n during tLTS treatment, as proven by reduced ribulose 1,5-biphosphate carboxylase (RuBPCase) activity. This limitation also enhanced lipid peroxidation in chloroplasts, decreased sucrose-metabolizing enzymes and ratios of both chlorophyll a/chlorophyll b (Chl a/b) and chlorophyll/carotenoids (Chl/Car), and increased protease senescence. Damages of tLTS treatment to photosynthesis were insufficiently alleviated even after the plants were returned to control temperature for 5 days (R2). Successive enhancement of low temperature depressed successful recovery of leaf photosynthesis of K. obovata seedlings mainly by impairing pigment synthesis, antioxidant metabolism, and sucrose translocation, as well as accelerating senescence of endopeptidase. Furthermore, our results suggest that decreases in sucrose content in leaves might also account for increases in reactive oxygen species (ROS) in chloroplasts.

Highlights

  • Mangroves that grow at the latitudinal extremes of their distribution are susceptible to extreme cold events

  • Kandelia obovata seedlings in a growth chamber were exposed to 5°C/−2°C for 36 h (−2°C for 16 h) with 12 h light per day at 600 μmol m−2 s−1 photosynthetic photon flux density (PPFD), the plants were transferred to the control condition (15°C/10°C and allowed to recover for 5 days (R1)

  • Our results suggest that decreases in sucrose content in leaves might account for increases in reactive oxygen species (ROS) in chloroplasts

Read more

Summary

Introduction

Mangroves that grow at the latitudinal extremes of their distribution are susceptible to extreme cold events. Successive enhancement of low temperature stress (seLTS) is a typical characteristic of extreme cold events. Low temperature is a major environmental constraint for plants as a result of the injury provoked on leaf photosynthesis. Inhibition of antioxidant enzyme activities by chilling stress leads to production of ROS, which confers serious oxidative damages to Zingiber officinale (Li et al 2014). Variations in photosynthesis are related to stomatal closure, leaf chlorosis, chloroplast malfunction, photo-inhibition or photo-oxidation, and sucrose metabolism. It is unclear whether physiological metabolic processes that depress the photosynthesis of mangroves have unique characteristics, in comparison with terrestrial plants

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.