Abstract

BackgroundEnvenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption.Methodology/Principal FindingsIn this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues.Conclusions/SignificanceThese results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.

Highlights

  • Snakebite envenoming is an important neglected disease in many tropical and subtropical developing countries

  • The mechanisms involved in coagulation or necrotic disturbances induced by snake venoms are well known, the disruption of capillary vessels by snake venom metalloproteinases (SVMPs) leading to hemorrhage and consequent local tissue damage is not fully understood

  • We reveal the mechanisms involved in hemorrhage induced by SVMPs by comparing the action of high and low hemorrhagic toxins isolated from Bothrops venoms, in mouse skin

Read more

Summary

Introduction

Snakebite envenoming is an important neglected disease in many tropical and subtropical developing countries. Antivenom therapy was set at the end of 19th century and is still the only efficient approach to treat snakebites. It cures systemic symptoms of envenoming while the local effects are not covered and usually leads to temporary or permanent disability observed in many patients [2,3]. In Brazil, the majority of the accidents reported to the Ministry of Health are caused by viper snakes [4]. Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call