Abstract
Ultraviolet radiation (UV), in particular the UVB range, suppresses the immune system in several ways. UVB inhibits antigen presentation, induces the release of immunosuppressive cytokines and causes apoptosis of leukocytes. UVB, however, does not cause general immunosuppression but rather inhibits immune reactions in an antigen-specific fashion. Application of contact allergens onto UV-exposed skin does not cause sensitization but induces antigen-specific tolerance since such an individual cannot be sensitized against the very same allergen later, although sensitization against other allergens is not impaired. This specific immunosuppression is mediated by antigen-specific suppressor/ regulatory T cells. UVB-induced DNA damage is a major molecular trigger of UV-mediated immunosuppression. Reduction of DNA damage mitigates UV-induced immunosuppression. Likewise interleukin-12 which exhibits the capacity to reduce DNA damage can prevent UV-induced immunosuppression and even break tolerance. Presentation of the antigen by UV-damaged Langerhans cells in the lymph nodes appears to be an essential requirement for the development of regulatory T cells. Studies addressing the molecular mechanisms underlying UV-induced immunosuppression will contribute to a better understanding how UV acts as a pathogen but on the other hand can be also used as a therapeutic tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.