Abstract

In end-stage renal disease (ESRD) endothelium may represent a key target for the action of circulating elements, such as modified erythrocytes (RBC) and/or plasmatic factors, that may facilitate inflammation and the vasculopathy associated with uremia. We have previously demonstrated that phosphatidylserine (PS) exposure on the surface of RBC from ESRD patients increases RBC-human umbilical vein endothelial cell (HUVEC) interactions and causes decreased nitric oxide (NO) production. We postulated that, besides the pro-inflammatory effects due to decreased NO bio-availability, enhanced ESRD-RBC-HUVEC interactions might directly stimulate pro-inflammatory pathways leading to increased vascular adhesion molecule expression. ESRD-RBC-endothelial cell interactions induced a time-dependent up-regulation of VCAM-1 and ICAM-1 (measured by Western blot (WB) and real-time PCR), associated with mitogen-activated protein kinase (MAPK) activation and impairment of the Akt/endothelial nitric oxide synthase (eNOS) signaling cascade, measured by WB. In reconstitution experiments, normal RBC incubated with uremic plasma showed increased PS exposure and significantly increased VCAM-1 and ICAM-1 mRNA levels when incubated on HUVEC. Interestingly, ESRD-RBC induced increased expression of adhesion molecules was prevented by Annexin-V (AnV, able to mask PS on RBC surface), anti-integrin-alpha(v)beta3, anti-thrombospondin-1 (TSP-1), and PD98059 (a selective inhibitor of MAPK phosphorylation). Moreover, AnV reversed the ESRD-RBC effects on MAPK and Akt/eNOS signaling pathways. Our data demonstrate that, possibly via a direct interaction with the endothelial thrombospondin-(alpha(v)beta3) integrin complex, ESRD-RBC-HUVEC adhesion induces a vascular inflammatory phenotype. Thus, intervention targeting ESRD-RBC increased adhesion to endothelium and/or MAPK and Akt/eNOS pathways may have the potential to prevent vascular lesions under uremic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.