Abstract

When behavioral avoidance cannot prevent an animal from being exposed to novel environmental toxins, physiological mechanisms must cope with the toxin and its effects. We are investigating the basis of urea tolerance in populations of Drosophila melanogaster that have been selected to survive and develop in food containing 300 mmol l(-1) urea. Previous research has demonstrated that the urea-selected larvae have lower levels of urea in their body than control larvae reared under the same conditions. The current series of experiments focuses on three possible ways of reducing urea levels in the body: urea metabolism, increased urea excretion and decreased urea uptake from the environment. We tested for urea metabolism directly, by assaying for activity of two urea-metabolizing enzymes, and indirectly, by looking for reduced urea content of their medium. To measure urea excretion rates in whole animals, we reared control and urea-selected larvae on urea-containing food (urea food), switched them to normal food and monitored the loss of urea from their hemolymph. We measured urea uptake by rearing control and selected larvae on normal food, switching them to urea food and monitoring the rate of urea appearance in the hemolymph. We found no evidence for urea metabolism by either direct or indirect methods. Control larvae excreted urea at a higher rate than selected, probably because they contained more urea than the selected larvae and thus had a greater gradient for urea loss. The rate of urea uptake in selected larvae was 2 mmol l(-1) h(-1) slower than the rate in control larvae, a difference that could account for the measured differences in body urea levels. Thus the selected larvae appear to have adapted to urea exposure primarily by decreasing the ability of urea to enter their body in the first place. The mechanism responsible for this reduction in uptake is uncertain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.