Abstract

We analyze mechanisms of high-order harmonic generation from two-center molecules at large internuclear separations in linearly polarized laser fields. Since laser-driven electrons acquire instantaneous kinetic energies of up to 8 times the ponderomotive potential ${U}_{\mathrm{p}}$, recombination at an appropriately placed nucleus leads to ultrahigh-order harmonic emission [P. Moreno, L. Plaja, and L. Roso, Phys. Rev. A 55, R1593 (1997)]. By solving the time-dependent Schr\"odinger equation for model systems, we show that this mechanism is only efficient if the single-particle orbital of the electron is coherently delocalized over the two potential wells. This is realized in the ground state of a one-electron molecular ion. In a neutral molecule or in a molecular ion created by ionization of a neutral molecule at large internuclear distance, the coherence is destroyed by electron-electron correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.