Abstract

Hemorrhage is the leading cause of potentially preventable death following injury. Excessive and uncontrolled bleeding, commonly referred to as trauma-induced coagulopathy (TIC), affects a quarter of all trauma patients and is associated with substantial injuries, increased transfusion requirements, and poor outcomes. Recent data have contributed to our current understanding of the molecular mechanisms driving TIC. The current literature offers evidence supporting proposed mechanisms that induce TIC, such as platelet dysfunction, endogenous anticoagulation, endothelial activation, fibrinogen modifications, and hyperfibrinolysis. However, the majority of these data are mere associations; causative data are slowly unfolding through the utilization of animal models of hemorrhagic shock coupled with prospective observational clinical studies. As both clinical and basic science research expands our understanding of TIC, trauma patient care is improving substantially. Future studies should focus on the interplay between the coagulation pathways whose simultaneous or codependent dysregulation could offer the most advantageous points for intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.