Abstract

To investigate the mechanisms involved in transport of sulfasalazine in Caco-2 cells. Permeability coefficients of sulfasalazine and its analogs across Caco-2 cell monolayers were measured as a function of direction of transport, energy and concentration dependence, and in the presence of inhibitors of various cellular efflux pumps and transporters. Permeability coefficients of sulfasalazine across Caco-2 cell monolayers were approximately 342-, 261-, and 176-fold higher from basolateral to apical direction (BL-->AP) than from apical to basolateral direction (AP-->BL) at 100, 200, and 500 microM, respectively. Carrier permeability coefficient, non-saturable membrane permeability coefficient, and Michaelis constant were estimated to be 1.4x10(-5) cm/s, 1.9x10(-8) cm/s, and 369 microM, respectively. The efflux of sulfasalazine was completely blocked at 4 degrees C and in the presence of an uncoupler of oxidative phosphorylation. Using cellular efflux inhibitors, the permeability of sulfasalazine was shown to depend on multidrug resistance-associated protein and anion sensitive transport mechanisms. Structure-permeability studies showed that the affinity of sulfasalazine for the cellular efflux pumps and transporters in Caco-2 cells depended strongly on the carboxylic acid functional group. The permeability of sulfasalazine across Caco-2 cell monolayer is very low due to its strong interaction with multiple cellular efflux pumps and transporters. This may partially explain its low absorption in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call