Abstract

The cytotoxic effect of many anticancer drugs relies on their ability to damage DNA. Drug resistance can be associated with the ability to remove potentially lethal DNA lesions. DNA damage tolerance offers an alternative route to resistance. In a drug-tolerant cell, persistent DNA damage has become uncoupled from cell death. Tolerance to some DNA damaging drugs is accompanied by inactivation of the cell's DNA mismatch repair pathway. This is widely acknowledged as the mechanism underlying resistance to methylating agents and to 6-thioguanine which produce structurally similar types of DNA damage. Defects in mismatch repair are also associated with resistance to numerous drugs that produce a wide variety of structurally diverse DNA lesions. Here I consider possible mechanisms by which mismatch repair might influence drug resistance and the extent to which loss of mismatch repair might be considered to confer a multidrug resistance phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.