Abstract

Grain boundary engineering (GBE) was carried out on 316L austenitic stainless steel with Thermo-mechanical processing (TMP), which was performed by unidirectional compression and subsequent annealing. The effect of TMP parameters including the strain and annealing time on grain boundary character distribution (GBCD) and the corresponding mechanism was investigated in the study. The results showed that high fraction of low-Σ coincident-site lattice (CSL) grain boundaries (about 55%) associating with interrupted network of random boundaries was obtained through TMP of 5% cold compression followed by annealing at 1000 °C for 45 min. The fraction of low-Σ boundaries increased with increasing the annealing time under all the experiment strain, but the mechanisms were different between the low and medium above levels of strain. Grains rotation and reaction of migratory boundaries might be the reasons of low-Σ boundaries growth in the strain of 5% and in the strain greater than or equal to 10%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.