Abstract

The mechanisms of the thapsigargin (TG)-induced capacitative Ca(2+) entry in in situ endothelial cells and its role in the regulation of arterial tone were investigated using front-surface fluorimetry and fura-2-loaded strips of porcine aortic valve and coronary artery. In the presence of extracellular Ca(2+), TG induced an initial rapid and a subsequent sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) in valvular strips. In the absence of extracellular Ca(2+), TG induced only a transient increase in [Ca(2+)](i). The TG-induced sustained elevation of [Ca(2+)](i) in endothelial cells was inhibited completely by 1 mM Ni(2+) and partly by 10 microM econazole and 30 microM ML-9, but not by 900 ng ml(-1) pertussis toxin or 100 microM wortmannin. Therefore, cytochrome P450 and protein phosphorylation are suggested to be involved in the TG-induced Ca(2+) influx in in situ endothelial cells. TG induced an endothelium-dependent large relaxation consisting of an initial and a late sustained relaxation in coronary arterial strip precontracted with U46619 (a thromboxane A2 analogue). Indomethacin alone had no effect, while indomethacin plus N(omega)-nitro-L-arginine (L-NOARG) markedly inhibited the sustained phase and slightly inhibited the initial phase of the TG-induced relaxation. TG induced a smaller but sustained relaxation during the 40 mM K(+)-induced precontraction than that seen during the U46619-induced precontraction. This relaxation was completely abolished by the pretreatment with indomethacin plus L-NOARG. In conclusion, both nitric oxide (NO) and endothelium-derived hyperpolarizing factor were suggested to mediate the TG-induced relaxation, while NO plays a major role in the sustained relaxation. The TG-induced sustained [Ca(2+)](i) elevation in endothelial cells was thus suggested to be mainly linked to the sustained production of NO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call