Abstract

Background and objectivePost-transplant refractory ascites (RA) is common in patients receiving living donor liver transplantation (LDLT) using a left hemi-liver graft than in those using a right hemi-liver graft. However, there is currently no clear mechanism explaining the effect of grafts on ascites drainage. The purpose of this study is to analyze the values of blood flow parameters in the portal vein under different grafts using computational fluid dynamics (CFD) to interpret the relationship between portal pressure values with ascites drainage. MethodsIn this work, ascites drainage was counted in 30 patients who underwent left-sided liver transplantation and 26 patients who underwent right-sided liver transplantation. The portal vein flow models of the transplanted liver under different flow rates were established based on computed tomography (CT) images and finite element theory. Ascites drainage and blood flow parameters were qualitatively compared. ResultsThe results show that the ascites drained from patients who received LDLT with a left hemi-liver is three times as that with a right hemi-liver. The simulation results show that the coefficient of the pressure-velocity curve of the left-liver is 1.7 times of the right-liver under the same hydrodynamic conditions, which qualitatively agrees with the clinical data. Moreover, the streamline of the transplanted left liver shows more vortexes compared with the right liver, which is a major reason for the left liver's higher pressure value. ConclusionThis clinical phenomenon is reproduced and comprehensively explained by the hemodynamic parameters of the portal vein. This work establishes the relationship between portal pressure values and floating water drainage, and offers a new way for physicians to predict postoperative risks intuitively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call