Abstract

We have built an anatomically correct testbed (ACT) hand with the purpose of understanding the intrinsic biomechanical and control features in human hands that are critical for achieving robust, versatile, and dexterous movements, as well as rich object and world exploration. By mimicking the underlying mechanics and controls of the human hand in a hardware platform, our goal is to achieve previously unmatched grasping and manipulation skills. In this paper, the novel constituting mechanisms, unique muscle to joint relationships, and movement demonstrations of the thumb, index finger, middle finger, and wrist of the ACT Hand are presented. The grasping and manipulation abilities of the ACT Hand are also illustrated. The fully functional ACT Hand platform allows for the possibility to design and experiment with novel control algorithms leading to a deeper understanding of human dexterity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call