Abstract

Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.