Abstract

Pulmonary granulomas were induced in BALB/c mice immunized with methylated bovine serum albumin in complete Freund's adjuvant by the intratracheal injection of plain agarose beads or beads conjugated to specific antigen. Large hypersensitivity granulomas developed around antigen-coupled beads in immunized animals. Smaller but still prominent granulomatous reactions developed around plain beads in immunized mice. In nonimmunized animals, both plain and antigen conjugated beads produced very small granulomas. Granuloma formation in sensitized animals was associated with suppressed delayed-type hypersensitivity reactions induced by the footpad injection of specific and nonspecific antigens. Lymph node cells from sensitized granuloma-bearing mice with cutaneous anergy showed suppressed specific and nonspecific antigen-induced proliferative responses in vitro. These cells also showed suppressed interleukin 2 production in response to specific antigen. Although no soluble suppressive factor was detected in granuloma extracts, suppressor cells were found in lymph nodes of granuloma-bearing mice, which could inhibit antigen-induced production of interleukin 2 by lymph node cells from immunized mice. Antigen-specific immunoglobulin G antibody production was not suppressed in immunized granuloma-bearing mice. Previous studies from our laboratory have demonstrated migration inhibition factor and interleukin 1 activities in aqueous extracts prepared from granuloma-bearing lungs of immunized mice. These results and the findings reported here indicate that granuloma formation and the associated anergy observed in this system are primarily expressions of cell-mediated immunity; selective suppression of in vivo and in vitro expressions of cell-mediated immunity in granuloma-bearing mice may be due to impaired antigen-induced interleukin 2 production; and such impairment is caused by suppressor cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.