Abstract

The mechanisms of sulfoxidation and epoxidation mediated by previously synthesized and characterized iron(III)-iodosylbenzene adduct, FeIII(OIPh) were investigated using para-substituted thioanisole and styrene derivatives as model substrates. Based on detailed kinetic reaction experiments, including the linear free-energy relationships between the relative reaction rates (logkrel) and the σp (4R-PhSMe) with ρ = -0.65 (catalytic) and ρ = -1.13 (stoichiometric), we obtained strong evidence that the stoichiometric and catalytic oxidation of thioanisoles mediated by FeIII(OIPh) species involves direct oxygen transfer. The small negative slope -2.18 from log kobs versus Eox for 4R-PhSMe gives further clear evidence for the direct oxygen atom transfer mechanism. On the contrary, with the linear free-energy relationships between the relative reaction rates (logkrel) and total substituent effect (TE, 4R-PhCHCH2) parameters with slope = 0.33 (catalytic) and 2.02 (stoichiometric), the stoichiometric and catalytic epoxidation of styrenes takes place through a nonconcerted electron transfer (ET) mechanism, including the formation of the radicaloid benzylic radical intermediate in the rate-determining step. On the basis of mechanistic studies, we came to the conclusion that the title iron(III)-iodosylbenzene complex is able to oxygenate sulfides and alkenes before it is transformed into the oxo-iron form by cleavage of the O-I bond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call