Abstract

A single strand of plasmid DNA is transferred during conjugation. We examined the mechanism of complementary strand synthesis in recipient cells following conjugative mobilization of derivatives of the IncQ plasmid R1162. A system for electroporation of donor cells, followed by immediate mating, was used to eliminate plasmid-specific replicative functions. Under these conditions, Escherichia coli recipients provided a robust mechanism for initiation of complementary strand synthesis on transferred DNA. In contrast, plasmid functions were important for efficient strand replacement in recipient cells of Salmonella enterica serovar Typhimurium. The mobilizing vector for R1162 transfer, the IncP1 plasmid R751, encodes a DNA primase with low specificity for initiation. This protein increased the frequency of transfer of R751 into Salmonella, but despite its low specificity, it was inactive on the R1162 derivatives. The R751 primase was slightly inhibitory for the transfer of both R751 and R1162 into E. coli. The results show that there is a chromosomally encoded mechanism for complementary strand synthesis of incoming transferred DNA in E. coli, while plasmid-specific mechanisms for this synthesis are important in Salmonella.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call