Abstract

Abstract The theory of ecological speciation suggests that assortative mating evolves most easily when mating preferences are directly linked to ecological traits that are subject to divergent selection. Sensory adaptation can play a major role in this process, because selective mating is often mediated by sexual signals: bright colours, complex song, pheromone blends and so on. When divergent sensory adaptation affects the perception of such signals, mating patterns may change as an immediate consequence. Alternatively, mating preferences can diverge as a result of indirect effects: assortative mating may be promoted by selection against intermediate phenotypes that are maladapted to their (sensory) environment. For Lake Victoria cichlids, the visual environment constitutes an important selective force that is heterogeneous across geographical and water depth gradients. We investigate the direct and indirect effects of this heterogeneity on the evolution of female preferences for alternative male nuptial colours (red and blue) in the genus Pundamilia. Here, we review the current evidence for divergent sensory drive in this system, extract general principles, and discuss future perspectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call