Abstract
[reaction: see text] Rate constants and product selectivities (S = ([ester product]/[acid product]) x ([water]/[alcohol solvent]) are reported for solvolyses of chloroacetyl chloride (3) at -10 degrees C and phenylacetyl chloride (4) at 0 degrees C in ethanol/ and methanol/water mixtures. Additional kinetic data are reported for solvolyses in acetone/water, 2,2,2-trifluoroethanol(TFE)/water, and TFE/ethanol mixtures. Selectivities and solvent effects for 3, including the kinetic solvent isotope effect (KSIE) of 2.18 for methanol, are similar to those for solvolyses of p-nitrobenzoyl chloride (1, Z = NO(2)); rate constants in acetone/water are consistent with a third-order mechanism, and rates and products in ethanol/ and methanol/water mixtures can be explained quantitatively by competing third-order mechanisms in which one molecule of solvent (alcohol or water) acts as a nucleophile and another acts as a general base (an addition/elimination reaction channel). Selectivities increase for 3 as water is added to alcohol. Solvent effects on rate constants for solvolyses of 3 are very similar to those of methyl chloroformate, but acetyl chloride shows a lower KSIE, and a higher sensitivity to solvent-ionizing power, explained by a change to an S(N)2/S(N)1 (ionization) reaction channel. Solvolyses of 4 undergo a change from the addition/elimination channel in ethanol to the ionization channel in aqueous ethanol (<80% v/v alcohol). The reasons for change in reaction channels are discussed in terms of the gas-phase stabilities of acylium ions, calculated using Gaussian 03 (HF/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-311G(d,p) MO theory).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.