Abstract

Perilla essential oil (PLEO) offers benefits for food preservation and healthcare, yet its instability restricts its applications. In this study, chitosan (CS) and TiO2 used to prepare composite particles. TiO2, after being modified with sodium laurate (SL), was successfully introduced at 0.1 %–3 % into the CS matrix. The resulting CS-SL-TiO2 composite particles can be formed by intertwining and rearranging through intramolecular and intermolecular interactions, and form an O/W interface with stability and viscoelasticity. The Pickering emulsions stabilized by these particles exhibit non-Newtonian pseudoplastic behavior, shear-thinning properties, and slow-release characteristics, along with antibacterial activity. Emulsions with 0.5 % and 1 % CS-SL-TiO2 composites demonstrated superior antibacterial effects against Escherichia coli and Staphylococcus aureus. The study revealed that all emulsions undergo Fickian diffusion and a sustained release of PLEO, with the Ritger-Peppas model best describing this release mechanism. The slow-release behaviors positively correlates with interfacial pressure, composite particle size, composite particle potential, composite contact angle, emulsion particle size and emulsion potential, but negatively correlates with diffusion rate, penetration rate, release kinetics and release rate. The findings lay groundwork for developing slow-release antimicrobial emulsions within polysaccharide matrices, showcasing promise for antimicrobial packaging solutions and enhanced food preservation techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.