Abstract

We have observed the dissolution of a self-assembled monolayer of octadecylphosphonic acid from a mica surface into organic solvent in real time using atomic force microscopy. Holes in the monolayer are observed to nucleate, grow, and percolate across the sample, leaving isolated monolayer islands that gradually decrease in size. The relative rates of hole growth and hole nucleation suggest that removing a molecule from the monolayer/hole boundary is about 5 × 104 times more likely than removing a molecule from within a continuous region of monolayer. The rate of dissolution is increased by flowing solvent through the cell compared to stagnant solvent and increased even further by rapid stirring using the AFM tip. The coverage kinetics can be quantitatively described by a model that incorporates desorption from “hole” regions and diffusive solution-phase transport through a stagnant layer of finite thickness. The coverage kinetics and hole nucleation and growth rates are consistent with a picture of monol...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.